Rsa 2

· blur66's blog


Variables #

$p=$ prime $q=$ other prime $n=p q $e=$ private key $d=$ public key #

encrypted message: $m = 2000_{dec}$

private key: $d = 13_{dec} = 1101_{bin}$

Decomposing binary into it significant digits $d_i$. Least significamt digit $d_0$ is the right most.

$$d = (2^31) + (2^21) + (2^10) + (2^01)$$ $$d = \sum_{i=0}^{n-1} {d_i*2^i}$$

Where $d_i$ is the $i^{th}$ significant digit. 0 is least significant (LSD 🌀), right to left

https://en.wikipedia.org/wiki/Modular_exponentiation


Encrypting a message #

$$c = m^e mod(n)$$

Decrypting a message (m) with private key (p) #

$$t = c^d*mod(n)$$

last updated: